Sei que vou por a mão em ninho de vespas ao tratar deste assunto, mas alguém tem que falar por isso, lá vai...
Qual é a melhor tecnologia 2.4Ghz? Futaba, Spektrum, Airtronics ou Xtreme Link? Não vou citar os rádios Hitec Aurora no momento simplesmente por que ainda não tenho informações consistentes sobre os mesmos. Embora já saibamos que eles utilizam um tipo de FHSS. E também não vou falar dos módulos CORONA, que usam o método DSSS/DSM, só não sei como conseguiram licenciar...
Primeiro vamos expor as características de cada um, para depois explicá-las separadamente.
Marca | Futaba | Spektrum | Airtronics | XtremeLink |
Modelos de rádio | Futaba 7C | Spektrum DX7 | Airtronics RDS8000 | Graupner MX-16 |
Tecnologia de Transmissão | FASST | DSM2 | FHSS/DSMJ | XPS |
Canais | 7 | 7 | 8 | 8 |
Faixa de trabalho | 2.4Ghz | 2.4Ghz | 2.4Ghz | 2.4Ghz |
Quantidade de canais ocupados durante o uso | 512*** | 2 (de 192) | 512*** | 2x512*** |
Sistema de detecção de ruidos antes da transmissão | Sim | Não | Sim | Sim |
Sistema Anti-Burro* | Não | Sim | Não | Sim |
Troca contínua de canais | Sim | Não | Sim | Sim |
Imunidade a Brown-out | Sim | Não | Sim | Sim |
Tipo de memória de dados do receptor | EEPROM | FLASH | EEPROM | EEPROM |
Tipo de memória de programa do receptor | FLASH | FLASH | FLASH | FLASH/ROM |
Sistema de receptores adicionais | Não | Sim | Não | Não |
Possibilidade de troca do Firmware do receptor | sim | não | não | sim |
Sistema de antena dupla | Sim | Sim** | Sim | Não |
Programação do Fail-safe para cada canal | Sim, via Rádio | Não, via Bind Plug | Sim, via Rádio | Sim, via Rádio |
Processo de Ligação (Binding) | Via botão | Via Bind Plug | Via Botão | Via Botão |
Quantidade de bits do sistema de identificação de modelos | 48bits | 32bits | 32bits**** | 48Bits |
Codificação de sinal analógico/digital | BINARY-PCM1024 | AD-PPM | BINARY-PCM1024 | BINARY-PROPRIETARY |
Resolução binária dos dados analógicos | 15-bit | 10-bit | 15-bit | 16-bit |
Número de passos do servo | 32768 | 1024 | 32768 | 65536 |
Sistema de verificação de erros | CRC | NENHUM | CHECKSUM | SYN/ACK |
Transmissão Bidirecional de dados/Telemetria | Não | Não | Não | Sim |
Velocidade de transmissão de dados | 256Kbps | 128Kbps | 256Kbps | 256Kbps |
Chipset do Transmissor | FUTABA FP9067 (4/6/7 canais) ou FP9072 (8/9/12/14) canais) | ATMEL ATMEGA 668 | ATxmega 64a4 (FUTABA FP9067) | Dallas DS89C420 |
Chipset do Receptor | FUTABA FP3208 | ATMEL ATMEGA328 | FUTABA FP3208 | Dallas DS89C420 |
Voltagem mínima de trabalho | 2.9v | 4.1v | 3.2v | 2.0v |
Voltagem máxima de trabalho | 15v | 10v | 16v | 30v |
Consumo de corrente | 150ma | 180ma | 160ma | 250ma |
*Anti-burro - Sistema que evita seleção do modelo errado na memória do transmissor (ex. Spektrum Modelmatch)
** Através de satélites (multilink)
*** Os sistemas FAST, FHSS/DSMJ e XPS trocam continuamente de canal, sempre estão sendo usados no mínimo 2, mas a cada pacote transmitido ele troca para um canal que esteja mais limpo, num total de 512 canais utilizáveis. O sistema XPS utiliza sempre 4 canais, 2 para transmissão e 2 para recepção
**** Na verdade, os sistemas airtronics também usam 48bits de dados, porém os dois primeiros bytes são sempre formados pelos caracteres ASCII "A" e "T", liberando assim apenas 32bits para uso.
Agora vamos à explicação comparativa das características mais importantes.
1 - Quantidade de canais
Neste quesito, levou vantagem o rádios Airtronics e XtremeLink pelo fato dos mesmos possuirem 8 Canais, embora internamente o Airtronics RDS8000 seja praticamente igual ao Futaba 7C, eles utilizaram o 8º canal. Lembrando que isso não necessariamente define que um rádio seja melhor que outro, embora geralmente quanto mais canais, maior o número de mixagens disponíveis, e isso geralmente facilita muito a vida na hora de eliminar tendências indesejáveis dos aeromodelos.
2 - Faixa de trabalho
Todos os rádios comparados estão na mesma faixa de trabalho, evitando-se assim comparações injustas com os rádios de 72Mhz. A faixa de 2.4Ghz é utilizada por oferecer maior imunidade natural a interferências, explico, a maioria das interferências comuns (TV, Rádio, Radio Amador, Motores elétricos escovados, Motores automotivos, Redes elétricas, raios e etc) ocorre na faixa que vai de 50Mhz até 1.2Ghz, qualquer transmissão feita acima desta faixa está naturalmente imune a estas interferências comuns. Porém, esta faixa de freqüência também apresenta algumas desvantagens, como por exemplo o efeito sombra, normalmente uma transmissão de rádio atravessa quase qualquer coisa (árvores, casas, carros, pessoas, animais, chuva e etc.), porém na faixa de 2.4Ghz (e similares), basta uma "coisa massiva" qualquer para bloquear o sinal. Até mesmo chuva ou uma parede de madeira pode atrapalhar ou até mesmo bloquear completamente o sinal. Portanto, evitem usar sistemas 2.4Ghz onde não se tenha visada direta com o avião. Também deve-se sempre levar em consideração a enorme quantidade de dispositivos operando na faixa de 2.4Ghz, como por exemplo, sistemas de transmissão de dados wireless (802.11B/G/N), telefones sem-fio, teclados e mouses sem fio, telefones celulares e etc., o que com certeza acaba congestionando o espectro nesta faixa.
3 -Tecnologia de transmissão
Futaba FASST (Futaba Avanced Spread Spectrum Technology) - Tecnologia de transmissão dos rádios Futaba, caracteriza-se pela utilização de transmissão de dados 100% digitais em troca contínua de canais, assim como identificação dos canais com nível de sinal ruim. Tem como vantagem a quase imunidade a interferências a grande quantidade de rádios transmitindo simultaneamente (192). A desvantagem fica por conta do delay em caso de perda de sinal, geralmente o sistema leva cerca de 1 segundo para detectar o sinal novamente. O Alcance médio fica em torno de 1.5 Milha. (2Km)
JR/Spektrum DSM2 - Tecnologia de transmissão dos rádios JR/Spektrum, caracteriza-se pela utilização de transmissão de dados em blocos (Cabeçalho+Sinal PPM digitalizado+Número Modelmatch) em dois canais aleatoreamente fixados no momento em que o rádio é ligado. O Número modelmatch faz uma sincronização entre a memória do modelo no rádio e o receptor no momento do processo de binding, evitando-se assim que se escolha o modelo errado na hora de voar. Tem como desvantagens a possibilidade de erro na transmissão (visto que não há checagem de erros de pacote), possibilidade de erro do número modelmatch devido a falhas na transmissão de dados (o que gera a famosa perda de binding que ocorre em alguns rádios Spektrum), a baixa resolução de movimento dos servos (1024, devido à digitalização do sinal PPM em 10 bits) e a baixa quantidade de canais disponíveis, o que limita o número máximo de rádios em uso.. (cerca de 80). O Alcance médio fica em torno de 1 Milha (1.6Km)
FHSS/DSMJ - Tecnologia de transmissão dos rádios Airtronics/JR DSMJ - Tem as mesmas características do sistema FASST da Futaba, porém os dois protocolos diferem em informações no cabeçalho de transmissão, o que impossibilita que um receptor Futaba funcione com um rádio Airtronics ou JR DSMJ. Porém o contrário acontece! Um receptor Airtronics funciona perfeitamente com o rádio Futaba FASST ou ainda com o JR DSMJ. A diferença é que no cabeçalho do Futaba os dois primeiros bytes de informação contém uma informação CRC para que se possa calcular a integridade dos dados. Logo, apenas o receptor Futaba sabe identificar isso. Nos rádios Airtronics os dois primeiros bytes de informação contém as letras "A" e "T", possivelmente identificando que é um rádio AirTronics... O Protocolo DMSJ é o mesmo protocolo FHSS, a JR foi obrigada a utilizar a tecnologia FHSS no Japão, pois a legislação de lá não permite que se "trave" um canal na faixa de 2.4Ghz, o que impossibilitou o uso da tecnologia DSSS/DSM2. A Futaba também tem um rádio em FHSS puro, o Futaba 4YF FHSS. Outra vantagem dos rádios AirTronics é seu custo, geralmente muito baixo. As desvantagens do FHSS/DSMJ são as mesmas do protocolo FASST e o alcance também é de cerca de 1.5 Milhas (2Km)
XPS - Tecnologia de transmissão dos Rádios Graupner XtremeLink, caracteriza-se pelo fato de utilizar uma grande banda de dados (256Kbps) e ser totalmente bidirecional, de forma a garantir sempre o melhor sinal possível. As vantagens são que os rádios na verdade transmitem (e recebem) em um protocolo bem similar ao TCP/IP utilizado por computadores. Normalmente na própria tela do rádio são mostradas informações como Nível de Sinal, voltagem da bateria do receptor e temperatura do receptor (telemetria). Com módulos adicionais de telemetria obtem-se informações completas sobre o vôo (altitude, direção, velocidade, temperatura externa e interna, etc). A checagem dos dados é feita pelo uso da tecnologia SYN/ACK que garante integridade dos dados e alta velocidade de transmissão dos pacotes. A única desvantagem deste rádio é seu custo... O Alcance fica na casa das 5 Milhas (8Km)
4 - Sistema de Verificação de erros
CRC - do inglês Cyclic redundancy check, ou verificação de redundância cíclica é um código detector de erros, um tipo de função matemática binária que gera um valor expresso em poucos bits em função de um bloco maior de dados, como um pacote de dados, ou um ficheiro, por forma a detectar erros de transmissão ou armazenamento. O CRC é calculado e anexado à informação a transmitir (ou armazenar) e verificada após a recepção ou acesso, para confirmar se não ocorreram alterações. O CRC é popular por ser simples de implementar em hardware binário, simples de ser analisado matematicamente, e pela eficiência em detectar erros típicos causados por ruído em canais de transmissão.
Checksum - Método de checagem de dados através de somas. Isto é feito calculando a soma de verificação dos dados antes do envio ou do armazenamento deles, e recalculá-los ao recebê-los ou recuperá-los do armazenamento. Se o valor obtido é o mesmo, as informações não sofreram alterações e portanto não estão corrompidas. Formas mais simplificadas destas somas são vulneráveis por não detectarem algumas formas de falha. A simples soma dos valores dos caracteres por exemplo é vulnerável a troca de ordem dos mesmos pela comutatividade da soma.
SYN/ACK - Método para verificação de dados onde o receptor transmite para o rádio uma aceitação de pacote, indicando que os dados chegaram ok... Funciona mais ou menos assim: O rádio (A) inicia uma conexão enviando um pacote SYN para o receptor (B) indicando que o seu ISN = X: A -> B SYN, seq de A = X B recebe o pacote, grava que a seq de A = X, responde com um ACK de X + 1, e indica que seu ISN = Y. O ACK de X + 1 significa que o host B já recebeu todos os bytes até ao byte X e que o próximo byte esperado é o X + 1: B -> A ACK, seq de A = X, SYN seq de B = Y, ACK = X + 1. A receber o pacote de B, fica sabendo que a sequência de B = Y, e responde com um ACK de Y + 1, que finaliza o processo de estabelecimento da conexão: A -> B ACK, seq de B = Y, ACK = Y + 1
Todos são métodos eficientes para checar dados em transmissões de baixa velocidade como as aplicadas pelos rádios. O Mais eficiente é o método SYN/ACK, porém, este só pode ser aplicado a sistemas bidirecionais, então para os sistemas mais simples, sobram os métodos CRC e Checksum. A JR/Spektrum preferiu confiar totalmente na qualidade de transmissão de seus dados, de modo que os radios JR/Spektrum só descartam um frame se ele chegar incompleto. Também é um método +- confiável, mas pode causar falhas rápidas de comando, os famosos glitches (que causam aquela sensação de que o avião às vezes não responde direito ao comando dado...).
5 - Tipo de memória do receptor
O tipo de memória do receptor é importante de se saber. Vou explicar de forma simplificada pois o assunto é bem técnico e é muito discutido entre os profissionais da área de eletrônica digital... Dependendo do tipo de memória, ela é mais ou menos confiável. Normalmente, as memórias eeprom são mais confiáveis para guardar dados do que as memórias flash, pois as memórias eeprom demandam um complexo método de gravação (por meio de códigos de programa em blocos), enquanto as memórias flash podem ser apagadas por falhas na alimentação, elas são gravadas por bits que habilitam ou desabilitam a entrada de informações e por um bus de dados comum. (geralmente esse é mais um motivo para a perda do bind em rádios JR Spektrum, pois seus receptores gravam os dados de binding em memória flash (interna ao microcontrolador do receptor)). Em tempo, a gravação de memórias eeprom está mais para a gravação em um HD de computador, enquanto a memória flash trabalha de forma mais parecida com uma memória RAM. As memórias flash, por também serem baseadas no conceito de microcapacitor, também podem ser alteradas por radiações....
6 - Resolução binária dos dados
Esta é uma característica que define a maciez e a precisão do movimento do servo em relação ao movimento dos sticks. Quanto maior a resolução binária, maior o número de passos (posições) que o servo tem em seu movimento. Conforme visto, existem rádios de 10, 15 e 16 bits, procurem sempre o de maior resolução, pois isto pode fazer a diferença entre um rasante colado ao chão e avião no chão ao tentar fazer um rasante colado ao chão...
7 -Voltagem Mínima de Trabalho
É a voltagem mínima onde o receptor continua funcionando, ou seja, caso a bateria fique sem carga, até onde o receptor continua funcionando. Quanto mais baixa a tensão de trabalho, melhor. Geralmente, uma bateria descarregada fica com a tensão na casa dos 3.4v, ou seja, se um receptor não puder funcionar nesta faixa de tensão, é indício de que ele vai parar de receber sinal no caso de descarga repentina da bateria.
8 - Sistema Anti-Burro*
É uma tecnologia que impede que se selecione o modelo errado no rádio, de modo a evitar comandos trocados. É uma tecnologia que ajuda, mas um pouco de atenção resolve!!!!! De qualquer modo, esta é uma tecnologia que traz vantagens e desvantagens, a vantagem é salvar o modelo em caso de seleção incorreta da memória do rádio, a desvantagem é que às vezes a memória do rádio (nos modelos que usam memória flash) pode ser corrompida e com isso perde-se a identificação do modelo no meio do vôo, derrubando assim o avião por "perda de binding". Ou seja, no fundo há bens que vem para o ma
**** Na verdade, os sistemas airtronics também usam 48bits de dados, porém os dois primeiros bytes são sempre formados pelos caracteres ASCII "A" e "T", liberando assim apenas 32bits para uso.
Agora vamos à explicação comparativa das características mais importantes.
1 - Quantidade de canais
Neste quesito, levou vantagem o rádios Airtronics e XtremeLink pelo fato dos mesmos possuirem 8 Canais, embora internamente o Airtronics RDS8000 seja praticamente igual ao Futaba 7C, eles utilizaram o 8º canal. Lembrando que isso não necessariamente define que um rádio seja melhor que outro, embora geralmente quanto mais canais, maior o número de mixagens disponíveis, e isso geralmente facilita muito a vida na hora de eliminar tendências indesejáveis dos aeromodelos.
2 - Faixa de trabalho
Todos os rádios comparados estão na mesma faixa de trabalho, evitando-se assim comparações injustas com os rádios de 72Mhz. A faixa de 2.4Ghz é utilizada por oferecer maior imunidade natural a interferências, explico, a maioria das interferências comuns (TV, Rádio, Radio Amador, Motores elétricos escovados, Motores automotivos, Redes elétricas, raios e etc) ocorre na faixa que vai de 50Mhz até 1.2Ghz, qualquer transmissão feita acima desta faixa está naturalmente imune a estas interferências comuns. Porém, esta faixa de freqüência também apresenta algumas desvantagens, como por exemplo o efeito sombra, normalmente uma transmissão de rádio atravessa quase qualquer coisa (árvores, casas, carros, pessoas, animais, chuva e etc.), porém na faixa de 2.4Ghz (e similares), basta uma "coisa massiva" qualquer para bloquear o sinal. Até mesmo chuva ou uma parede de madeira pode atrapalhar ou até mesmo bloquear completamente o sinal. Portanto, evitem usar sistemas 2.4Ghz onde não se tenha visada direta com o avião. Também deve-se sempre levar em consideração a enorme quantidade de dispositivos operando na faixa de 2.4Ghz, como por exemplo, sistemas de transmissão de dados wireless (802.11B/G/N), telefones sem-fio, teclados e mouses sem fio, telefones celulares e etc., o que com certeza acaba congestionando o espectro nesta faixa.
3 -Tecnologia de transmissão
Futaba FASST (Futaba Avanced Spread Spectrum Technology) - Tecnologia de transmissão dos rádios Futaba, caracteriza-se pela utilização de transmissão de dados 100% digitais em troca contínua de canais, assim como identificação dos canais com nível de sinal ruim. Tem como vantagem a quase imunidade a interferências a grande quantidade de rádios transmitindo simultaneamente (192). A desvantagem fica por conta do delay em caso de perda de sinal, geralmente o sistema leva cerca de 1 segundo para detectar o sinal novamente. O Alcance médio fica em torno de 1.5 Milha. (2Km)
JR/Spektrum DSM2 - Tecnologia de transmissão dos rádios JR/Spektrum, caracteriza-se pela utilização de transmissão de dados em blocos (Cabeçalho+Sinal PPM digitalizado+Número Modelmatch) em dois canais aleatoreamente fixados no momento em que o rádio é ligado. O Número modelmatch faz uma sincronização entre a memória do modelo no rádio e o receptor no momento do processo de binding, evitando-se assim que se escolha o modelo errado na hora de voar. Tem como desvantagens a possibilidade de erro na transmissão (visto que não há checagem de erros de pacote), possibilidade de erro do número modelmatch devido a falhas na transmissão de dados (o que gera a famosa perda de binding que ocorre em alguns rádios Spektrum), a baixa resolução de movimento dos servos (1024, devido à digitalização do sinal PPM em 10 bits) e a baixa quantidade de canais disponíveis, o que limita o número máximo de rádios em uso.. (cerca de 80). O Alcance médio fica em torno de 1 Milha (1.6Km)
FHSS/DSMJ - Tecnologia de transmissão dos rádios Airtronics/JR DSMJ - Tem as mesmas características do sistema FASST da Futaba, porém os dois protocolos diferem em informações no cabeçalho de transmissão, o que impossibilita que um receptor Futaba funcione com um rádio Airtronics ou JR DSMJ. Porém o contrário acontece! Um receptor Airtronics funciona perfeitamente com o rádio Futaba FASST ou ainda com o JR DSMJ. A diferença é que no cabeçalho do Futaba os dois primeiros bytes de informação contém uma informação CRC para que se possa calcular a integridade dos dados. Logo, apenas o receptor Futaba sabe identificar isso. Nos rádios Airtronics os dois primeiros bytes de informação contém as letras "A" e "T", possivelmente identificando que é um rádio AirTronics... O Protocolo DMSJ é o mesmo protocolo FHSS, a JR foi obrigada a utilizar a tecnologia FHSS no Japão, pois a legislação de lá não permite que se "trave" um canal na faixa de 2.4Ghz, o que impossibilitou o uso da tecnologia DSSS/DSM2. A Futaba também tem um rádio em FHSS puro, o Futaba 4YF FHSS. Outra vantagem dos rádios AirTronics é seu custo, geralmente muito baixo. As desvantagens do FHSS/DSMJ são as mesmas do protocolo FASST e o alcance também é de cerca de 1.5 Milhas (2Km)
XPS - Tecnologia de transmissão dos Rádios Graupner XtremeLink, caracteriza-se pelo fato de utilizar uma grande banda de dados (256Kbps) e ser totalmente bidirecional, de forma a garantir sempre o melhor sinal possível. As vantagens são que os rádios na verdade transmitem (e recebem) em um protocolo bem similar ao TCP/IP utilizado por computadores. Normalmente na própria tela do rádio são mostradas informações como Nível de Sinal, voltagem da bateria do receptor e temperatura do receptor (telemetria). Com módulos adicionais de telemetria obtem-se informações completas sobre o vôo (altitude, direção, velocidade, temperatura externa e interna, etc). A checagem dos dados é feita pelo uso da tecnologia SYN/ACK que garante integridade dos dados e alta velocidade de transmissão dos pacotes. A única desvantagem deste rádio é seu custo... O Alcance fica na casa das 5 Milhas (8Km)
4 - Sistema de Verificação de erros
CRC - do inglês Cyclic redundancy check, ou verificação de redundância cíclica é um código detector de erros, um tipo de função matemática binária que gera um valor expresso em poucos bits em função de um bloco maior de dados, como um pacote de dados, ou um ficheiro, por forma a detectar erros de transmissão ou armazenamento. O CRC é calculado e anexado à informação a transmitir (ou armazenar) e verificada após a recepção ou acesso, para confirmar se não ocorreram alterações. O CRC é popular por ser simples de implementar em hardware binário, simples de ser analisado matematicamente, e pela eficiência em detectar erros típicos causados por ruído em canais de transmissão.
Checksum - Método de checagem de dados através de somas. Isto é feito calculando a soma de verificação dos dados antes do envio ou do armazenamento deles, e recalculá-los ao recebê-los ou recuperá-los do armazenamento. Se o valor obtido é o mesmo, as informações não sofreram alterações e portanto não estão corrompidas. Formas mais simplificadas destas somas são vulneráveis por não detectarem algumas formas de falha. A simples soma dos valores dos caracteres por exemplo é vulnerável a troca de ordem dos mesmos pela comutatividade da soma.
SYN/ACK - Método para verificação de dados onde o receptor transmite para o rádio uma aceitação de pacote, indicando que os dados chegaram ok... Funciona mais ou menos assim: O rádio (A) inicia uma conexão enviando um pacote SYN para o receptor (B) indicando que o seu ISN = X: A -> B SYN, seq de A = X B recebe o pacote, grava que a seq de A = X, responde com um ACK de X + 1, e indica que seu ISN = Y. O ACK de X + 1 significa que o host B já recebeu todos os bytes até ao byte X e que o próximo byte esperado é o X + 1: B -> A ACK, seq de A = X, SYN seq de B = Y, ACK = X + 1. A receber o pacote de B, fica sabendo que a sequência de B = Y, e responde com um ACK de Y + 1, que finaliza o processo de estabelecimento da conexão: A -> B ACK, seq de B = Y, ACK = Y + 1
Todos são métodos eficientes para checar dados em transmissões de baixa velocidade como as aplicadas pelos rádios. O Mais eficiente é o método SYN/ACK, porém, este só pode ser aplicado a sistemas bidirecionais, então para os sistemas mais simples, sobram os métodos CRC e Checksum. A JR/Spektrum preferiu confiar totalmente na qualidade de transmissão de seus dados, de modo que os radios JR/Spektrum só descartam um frame se ele chegar incompleto. Também é um método +- confiável, mas pode causar falhas rápidas de comando, os famosos glitches (que causam aquela sensação de que o avião às vezes não responde direito ao comando dado...).
5 - Tipo de memória do receptor
O tipo de memória do receptor é importante de se saber. Vou explicar de forma simplificada pois o assunto é bem técnico e é muito discutido entre os profissionais da área de eletrônica digital... Dependendo do tipo de memória, ela é mais ou menos confiável. Normalmente, as memórias eeprom são mais confiáveis para guardar dados do que as memórias flash, pois as memórias eeprom demandam um complexo método de gravação (por meio de códigos de programa em blocos), enquanto as memórias flash podem ser apagadas por falhas na alimentação, elas são gravadas por bits que habilitam ou desabilitam a entrada de informações e por um bus de dados comum. (geralmente esse é mais um motivo para a perda do bind em rádios JR Spektrum, pois seus receptores gravam os dados de binding em memória flash (interna ao microcontrolador do receptor)). Em tempo, a gravação de memórias eeprom está mais para a gravação em um HD de computador, enquanto a memória flash trabalha de forma mais parecida com uma memória RAM. As memórias flash, por também serem baseadas no conceito de microcapacitor, também podem ser alteradas por radiações....
6 - Resolução binária dos dados
Esta é uma característica que define a maciez e a precisão do movimento do servo em relação ao movimento dos sticks. Quanto maior a resolução binária, maior o número de passos (posições) que o servo tem em seu movimento. Conforme visto, existem rádios de 10, 15 e 16 bits, procurem sempre o de maior resolução, pois isto pode fazer a diferença entre um rasante colado ao chão e avião no chão ao tentar fazer um rasante colado ao chão...
7 -Voltagem Mínima de Trabalho
É a voltagem mínima onde o receptor continua funcionando, ou seja, caso a bateria fique sem carga, até onde o receptor continua funcionando. Quanto mais baixa a tensão de trabalho, melhor. Geralmente, uma bateria descarregada fica com a tensão na casa dos 3.4v, ou seja, se um receptor não puder funcionar nesta faixa de tensão, é indício de que ele vai parar de receber sinal no caso de descarga repentina da bateria.
8 - Sistema Anti-Burro*
É uma tecnologia que impede que se selecione o modelo errado no rádio, de modo a evitar comandos trocados. É uma tecnologia que ajuda, mas um pouco de atenção resolve!!!!! De qualquer modo, esta é uma tecnologia que traz vantagens e desvantagens, a vantagem é salvar o modelo em caso de seleção incorreta da memória do rádio, a desvantagem é que às vezes a memória do rádio (nos modelos que usam memória flash) pode ser corrompida e com isso perde-se a identificação do modelo no meio do vôo, derrubando assim o avião por "perda de binding". Ou seja, no fundo há bens que vem para o ma
Nenhum comentário:
Postar um comentário